Home Optics Experiments PE-1600 Iodine Molecular Spectroscopy


  • Iodine Diatomic Molecule
  • Molecule Energy Level
  • Electronic, Vibrational and Rotational energy level
  • Optical Pumping
  • Fluorescence Spectrum
  • Stokes and Anti Stokes Emission
  • Molecular Ground State
  • Uncertainty Principle
  • Dunham Coefficients
  • Franck Condon Principle
  • Raman Scattering


Basic to advanced experiment

Intended institutions and users:

Physics Laboratory

Engineering department

Electronic department

Biophotonics department

Chemistry department

Physics education in Medicine



How it works ...


PE-1600 Iodine Molecular Spectroscopy

Educational PE-1600 Iodine Molecular Spectroscopy Kit

PE-1600 Iodine Molecular Spectroscopy Energy Level Diagram

Molecular spectroscopy is one of the most important technologies to identify molecules in science, chemistry, biology and even in security applications. Precision spectroscopy, optical communication, modern length and frequency measurements using references and secondary frequency standards respectively based on stabilised laser. At present 12 optical frequencies in the visible and near infrared range are proposed by the “Comité International des Poids et Mesures (CIPM)”. Six of them use transitions of Iodine molecules. For the time being the hyper fine transition of the iodine molecule a10 of the R(56)(32-0) is declared as reference with a relative uncertainty of 7∙10-11. In the Fig. 2.42 the transition (32-0) is shown. Hereby, is 32 the vibration quantum number of the excited state and 0 those of the ground state. However, a great variety of transitions to the ground state exist which will be one topic of interest within this experiment. Iodine is ideally suited since it consists out two identical atoms also termed as a diatomic molecule or also as dimer. Remarkably, optical transitions are only allowed between the electronic states of the molecule resulting in a clearer spectrum. Even more, with a suitable narrowband laser only one level is excited from which a series of transitions down into various vibrational levels of the ground state take place. In the past, expensive lasers have been used to study the properties of molecular Iodine. The inexpensive “green laser pointer” provides a wavelength at 532 nm which is ideal to excite the iodine molecule. However, the underlying generation of the green radiation is based on the frequency doubling of a diode pumped Nd:VO4 laser. Such a laser has a gain bandwidth of 1 nm. Due to thermal drift of the cavity, the frequency doubled radiation also drifts in a range of 0.5 nm (530 GHz). However, the absorption width of the Iodine molecule due to the Doppler broadening of 437 MHz at 25°C is much smaller compared to the thermal drift of the excitation laser. Therefore the cavity of the “green laser” must be actively thermally stabilised.

PE-1600 Iodine Molecular Spectroscopy

PE-1600 Iodine Molecular Spectroscopy-Description of the components

PE-1600 Iodine Molecular Spectroscopy - Iodine molecular spectrum

The excitation or pump laser (2) is mounted into a 4 axes adjustment holder (3) to align the beam centrically with respect to the iodine cell (5). The laser is connected to the controller (1) which maintains the temperature with an accuracy of 0.01°C and the injection current on 0.1 mA. A smooth temperature as well as current setting facilitates the tuning of the excitation laser to the respective transition. By means of an optical fibre probe (FP) the fluorescence light is guided to the optional spectrometer. The fibre probe is part of the optional spectrometer. If the customer already has such a spectrometer it can be used as well, however, the diameter of the ferrule should be 3.2 mm so that it fits into the fibre adapter (FA) which is attached to the support rod of the cell protective cover. The adapter is designed in such a way that the fibre looks into the fluorescence path without being saturated by the pump light. After tuning the temperature to the strong visible fluorescence which appears as a greenish orange inside the cell. It takes a while to lock to the best temperature. In a first approach the set temperature is changed by lets say 2°. One observes the up and downs of the fluorescence as well as the actual temperature. The temperature is then set to this value and further adjusted. The power should remain unchanged (the more the better) while tweaking the temperature. The spectrometer should show already the first fluorescence spectrum and further refinements are done in 0.02°C steps for maximum amplitude.

PE-1600 Iodine Molecular Spectroscopy