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1 Fundamentals 
Fabry Perot resonators function not only as indispensable 
parts of lasers but also as high-resolution optical spectrum 
analysers. This means the functioning is based on the super-
position or interference of light. Jamin (J. Jamin, Pogg. 
Ann., Vol.98 (1856) P.345) first built an interference device 
in 1856. He could measure the relative refractive index of 
optical media accurately with this device (Fig. 1). 

 
Fig. 1: Jamin’s interferometer - 1856 

This formed the basis on which Mach and Zehnder devel-
oped an interferometer of great significance in 1892 (E. 
Mach Z. - Building instruments, Vol.12 (1892), P.89), now 
known as the Mach-Zehnder interferometer (Fig. 2). It has 
become very important in laser measuring techniques. e.g. 
this type of interferometer is used for laser vibrometers. 
 

 
 

Fig. 2: Mach-Zehnder interferometer. 

The most well-known interferometer however, was devel-
oped by Michelson in 1882 (A. A. Michelson, Philos. 
Mag.(5) Vol.13 (1882) P.236). The following explanation of 
light interference uses this type of interferometer as an ex-
ample. 
 

 
Fig. 3: Michelson interferometer 

 
Fig. 4: Modern technical Michelson interferometer for 
interferometrical measurement of length by laser 

A laser beam A hits the beam-splitting prism as shown in 
Fig. 4. At this point it is split up into the two components R 
(reference beam) and M (measuring beam). This is an im-
portant characteristic of this type of interferometer. They are 
therefore called two-beam interferometers, whereas in the 
interferometers or resonators developed later by Fabry Pe-
rot, not just two, but many beams were made to interfere. 
This type of interferometer is therefore known as a multi-
beam interferometer (Fig. 5). 
In this interferometer constructed by A. Fabry and Ch. Perot 
(1897) the incoming light beam is split into many individual 
components which all interfere with each other. 
 

 
 

Fig. 5: The multibeam interferometer by A. Fabry and 
Ch. Perot, 1897, is still used today in high-resolution 
spectroscopy and as a laser resonator (but, mainly with 
curved mirrors). 

To understand the Fabry Perot we should first examine the 
interference of two beams and then calculate the interfer-
ence for many beams. 

1.1 Two beam interference 
Let us first look at the Michelson Interferometer as shown 
in Fig. 4 once more. The incoming light beam has an elec-
tric field EA which oscillates at a frequency ω and has trav-
elled the path rA. 

( )A 0 AE A sin t kr= ⋅ ω +  

A0 is the maximum amplitude and k is the wave number 
2k π=
λ

 . 

The result for the field ER is : 
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( )R R R RE A sin t kx= ⋅ ω + + ϕ  

and for the field EM: 
( )M M M RE A sin t kx= ⋅ ω + + ϕ  

 
k(xR-xM)is the phase shifting of the measurement wave as 
opposed to the reference wave, which occurs because the 
path of the measuring beam through the index arm of the in-
terferometer is longer or shorter than the path of the refer-
ence arm. This phase shifting is also known as the path dif-
ference and is symbolised as δ. 
ϕR and ϕM are phase changes occurring through reflection at 
a boundary surface. When reflection occurs on an ideal re-
flector, a phase shift of 180o takes place. 
If we follow the path of the measuring beam up to Exit 1, 
we can see that the reference beam goes through two reflec-
tions and the measuring beam goes through three reflec-
tions. The measuring beam undergoes a phase shift of 180o 
as opposed to the reference beam. The shift in field intensity 
of 180° is marked with an *. From the point within the 
beam-splitter, as shown in Fig. 4, where the measuring and 
reference beams meet, the field intensities add up at Exit 1 
to E1 and/or at Exit 2 to E2, resulting in: 
 

1 2 ME E E∗= +  2 R ME E E∗= +  
 

( ) ( )1 R R M ME A sin t kx A sin t kx= ω + − ω +  

 
( ) ( )2 R R M ME A sin t kx A sin t kx= − ω + + ω +  

 
 
because: ( ) ( )sin 180 sinα + = α . 
 
However, field intensity cannot be measured on the spot, so 
the luminous intensity I, which is a result of the square of 
the electrical field strength of the light, has to be perceived 
by the eye or by using a photo detector: 

2
lightI E=  

Therefore for Exit 1: 

( ) ( )( )2
1 R R M MI A sin t kx A sin t kx= ω + − ω +  

 
A short calculation shows this result: 
 

( )
( ) ( )

( )

2
1 R R

R M R M

2
M M

I I sin t kx

2A A sin t kx sin t kx

I sin t kx

= ⋅ ω +

− ω + ⋅ ω +

+ ⋅ ω +

 

 
If we use lasers with a red line as the light source, e.g. the 
Helium-Neon laser at a wavelength of 0.632 µm, the radian 
frequency will be ω=2πν or the frequency ν : 

8
14

6

c 3 10 4.75 10 Hz
0.632 10−

⋅ν = = = ⋅
λ ⋅

 

 

Except of course, the eye, there is to date, still no other de-
tector that is even close to being this fast. Intensities which 
oscillate at that fast speed are therefore taken only as tempo-
rary mean values. The temporary mean value of sin2(ωt) is 
1/2, therefore: 

( ) ( )1 R M R M R MI I I 2 I I sin t kx sin t kx= + − ω + ω +
 
If we use the theorem of addition 

( ) ( )( )1 cos cos sin sin
2

⋅ α −β − α + β = α ⋅ β  

and observe that the temporary average value of cos(ωt)=0, 
the result would be: 

R M
1 R M

I II I I cos
2
+= − ⋅ δ  ( 1) 

( ) ( )R M
R M

x x
k x x 2

−
δ = ⋅ − = π⋅

λ
 

or with IR = IM = 1/2I0 (beam split is exactly 50% / 50%) 
 

( )0
1

II 1 cos
2

= − δ for Exit 1 ( 2) 

( )0
1

II 1 cos
2

= + δ for Exit 2 ( 3) 

 
If the path difference δ is zero, i.e. xR - xM = 0, then I1 is 
equal to zero and I2 is equal to I0. 
 
If the path difference δ is π i.e. xR - xM = λ /2, I2 equals zero 
and I1 equals I0. 
 
A shift of the measuring beam reflector of only λ/4 
(0.000158 mm!) is sufficient for this to occur, since the 
measuring path is traversed twice. 
 

 
Fig. 6: Diagram of the Intensity I1, I2 and the sum of I1 
+ I2 as a function of the path difference δ 

This function of the Michelson interferometer can normally 
not be found in textbooks and manuals. This is why the 
question: Where is the interferometer's energy in the case of 
destructive interference? is often raised. The answer is: 
every interferometer has at least two exits which naturally 
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must have a phase difference of 180o. The second exit of the 
Michelson interferometer as shown in Fig. 4 leads back to 
the light source. This line-up is, therefore, not of much use 
in techniques for laser measurement, since the light is com-
pletely reflected back into the laser in one particular path 
difference and thus destroys the oscillation mode of the la-
ser. It is for this reason that the modification of the Michel-
son interferometer as shown in Fig. 4 is used in such cases. 

1.2 Real interferometers 
If the beam splitter ratio of division does not correspond ex-
actly to 1, then the transmission curve changes according to 
Eq. 1 as shown in Fig. 7. 
 

 
Fig. 7: Signal at Exit 1 at IR = 0.2 I0 and IM = 0.8 I0 

At this point it would be appropriate to introduce the term V 
(Visibility), used to show contrast: 
 

max min

max min

I IV
I I

−=
+

 ( 4 ) 

according to equation ( 1 ) the result is: 

( )max R M R M
1I I I I I
2

= + + ⋅  

and 

( )min R M R M
1I I I I I
2

= + − ⋅  

or: 

R M

R M

2 I I
V

I I
⋅ ⋅

=
+

 
( 5 ) 

 
In Fig. 6 the contrast V = 1 and in Fig. 7 V = 0.8. 
A reduction in contrast can occur when, for example, the ad-
justment condition is not optimal. i.e. there is not a 100% 
overlapping of the beams IM and IR. The following then hap-
pens: 
 

M R 0I I I+ <  
see Fig. 8 

 
Fig. 8: The interference signal given at Exit 1 at IM = 
0.2 I0 and IR = 0.4 I0, is caused by maladjustment and 
not by an ideal beam splitter 

Till now we have tacitly assumed that the source of light 
only has a sharp frequency of ω.In practice this is never the 
case. Even lasers have a final emission band width 
δω,limiting the length of coherence Lc to: 

c
cL =

δν
  ( 6 ) 

 

 
Fig. 9: Contrast as a function of the path difference of a 
light source with an emission bandwidth of 5 and 10 
MHz (Laser) 

Although the interferometer is ideal, the contrast obtained 
will not be good if the emission bandwidth of the light 
source is wide. Michelson carried out his experiments with 
the red line of a cadmium lamp which had a coherence 
length of only 20 cm. Since the index arm is traversed twice 
the measurement area available for him to work on was only 
10 cm.  
Since a two mode laser emits two distinct frequencies, even 
though this is done within a narrow bandwidth, the contrast 
function shows zero setting in the distance between the 
modes. 
The line width of the light source can be deduced with Eq. 6 
by measuring the contrast function. We should bear in mind 
that Michelson carried this out on the green Hg-line and 
captured 540,000 wavelengths of path difference with the 
naked eye in the process, Perot and Fabry brought the figure 
up to 790,000 and Gehrcke made it as far as 2,600,000 ! 
Imagine this: Shifting the measurement reflector, observing 
the light/dark stripes with the eye and counting to 2,600,000 
at the same time. 
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Fig. 10: Contrast as a function of the path difference of 
a mono mode and a two mode laser 

It is no wonder then, that people were concerned about mak-
ing a better device that could achieve the goal, i.e. measur-
ing line widths in a way that would take less time. 
This finally lead to the development of Fabry and Perot's 
multibeam interferometer, which will be discussed in the 
next chapter. 
All the basic characteristics of the two-beam interferometer 
mentioned discussed in the last chapter also apply to the 
multibeam interferometer, and in particular, to the formulae 
required for calculating the interference terms. 
 
2 Multibeam interferometer 

2.1 The Ideal Fabry Perot 
 

 
 

Fig. 11: Fabry and Perot’s multibeam interferometer 

The two plates are at a distance d from each other and have 
a reflectivity R. Absorption should be ignored, resulting in 
R = 1-T (T = Transmission). The wave falls under the angle 
α in the Fabry Perot (from now onwards referred to as FP). 
 
At this point we are only interested in the amplitudes Ai and 
will consider the sine term later (Fig. 12) 
 

 
 

Fig. 12: Diagram of the derivation of the individual 
amplitudes 

The incoming wave has the amplitude A0 and the intensity 
I0. After penetrating the first plate the intensity is 
 

( )1 0 0I 1 R I T I= − ⋅ = ⋅  

since  2I E=  

we have  i1 0A 1 R A= − ⋅  

1
i2 i1 0A R A 1 R R A= ⋅ = − ⋅ ⋅  

2
i3 i2 0A R A 1 R R A= ⋅ = − ⋅ ⋅  

3
i4 i3 0A R A 1 R R A= ⋅ = − ⋅ ⋅  

n 1
in i(n 1) 0A R A 1 R R A−

−= ⋅ = − ⋅ ⋅  

The amplitudes A coming out of the second plate have the 
values: 

( )1 i1 0A 1 R A 1 R A= − ⋅ = − ⋅  

( ) 2
2 i2 0A 1 R A 1 R R A= − ⋅ = − ⋅  

( ) 3
3 i3 0A 1 R A 1 R R A= − ⋅ = − ⋅  

( ) n
n in 0A 1 R A 1 R R A= − ⋅ = − ⋅  

Now let us observe how much oscillation there is. Here, the 
following calculation can be made simpler if we use cos in-
stead of sine. 

( )E A cos t kx= ⋅ ω + + δ  

δ is the phase shift with reference to E1 It is created by pass-
ing through many long paths in the FP. 

2kd
cos

δ =
α

 

( )1 1E A cos t kx= ⋅ ω +  
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( )2 2E A cos t kx= ⋅ ω + + δ  

( )3 3E A cos t kx 2= ⋅ ω + + ⋅δ  

( )( )n nE A cos t kx n 1= ⋅ ω + + − ⋅δ  

( ) ( )( )n
n 0E 1 R R A cos t kx n 1= − ⋅ ⋅ ⋅ ω + + − ⋅δ  

 
Just as with the two-beam interferometer the individual field 
intensities now have to be added up and then squared to ob-
tain the intensity. 

n
0

E E
∞

= ∑  

To make further derivation easier, we will use the following 
equation: 

[ ]cos Re cos i sinγ = γ − ⋅ γ  

Re[ ] is the real component of a complex number. 
With 

i ie ecos
2

γ − γ+γ =  and 
i ie esin

2i

γ − γ−γ =  

is icos Re e γ γ =    

Due to the change in writing with complex numbers the rule 
for calculating intensity from a field intensity now is: 

*I E E= ⋅  

in which case E* is the conjugate-complex of E (Rule: ex-
change i with -i). The following sum of individual field in-
tensities must now be calculated: 

( ) ( )
p

i t kx i n 1
n

n 1
E Re e A eω + − δ

=

 
= ⋅ ⋅ 

 
∑  

Inserted for An and e -iδ from the sum of n= 1 till p reflec-
tions taken out: 

( ) ( ) ( )
p

i t kx i n 1n
0

n 1
E Re e 1 R A R eω + − δ

=

 
= ⋅ − ⋅ ⋅ ⋅ 

 
∑  

( ) ( )
p

i t kx i n in
0

n 1
E Re e 1 R A e R eω + − δ δ

=

 
= ⋅ − ⋅ ⋅ ⋅ ⋅ 

 
∑  

The sum shows a geometric series, the result of which is: 
p ipp

n in
i

n 1

1 R eR e
1 R e

δ
δ

δ
=

− ⋅⋅ =
− ⋅∑  

For the electric field strength E we get: 

( ) ( )
p ip

i t kx i
0 i

1 R eE Re e 1 R A e
1 R e

δ
ω + − δ

δ

 − ⋅ ⋅= ⋅ − ⋅ ⋅ ⋅ − ⋅ 
 

If we now increase the reflections p to an infinite number, 
Rp will go against zero since R<1 and the result is: 

( ) ( )i t kx i
0 i

1E Re e 1 R A e
1 R e

ω + − δ
δ

 = ⋅ − ⋅ ⋅ ⋅ − ⋅ 
 

The intensity is established by: 
*I E E= ⋅  

( )
( ) ( )

2

0 i i

1 R
I I

1 R e 1 R eδ − δ

−
=

− ⋅ ⋅ − ⋅
 

( )2

0 i i 2

1 R
I I

1 R e Re Rδ − δ

−
=

− ⋅ − +
 

( )2

0 2

1 R
I I

1 R 2R cos
−

=
+ − δ

 

with 22 sin 1 cos
2
δ ⋅ = − δ  

 

resulting in: 

( )
( )( )

2

0 2 2

1 R
I I

1 R 2R 1 2sin / 2
−

=
+ − ⋅ − δ

 

and finally: 

( )
( ) ( )

2

0 2 2

1 R
I I

1 R 4 R sin / 2
−

=
− + ⋅ ⋅ δ

 

Let us now add the abbreviation for δ again and observe that 
for an infinite number of reflections either the angle of inci-
dence α becomes zero or the mirrors have to be infinitely 
large. If α is set equal to zero, then we get 

2 d k 2 d k
cos
⋅ ⋅δ = = ⋅ ⋅

α
 

and the final result: 

( )
( )

2

0
2 2

1 R
I I

2 d1 R 4 R sin

−
=

π − + ⋅ ⋅  λ 

 ( 7) 

This function was first derived by G.B. Airy (Philos.Mag. 
(3) Bd.2 (1833)). It is shown in Fig. 13 
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Fig. 13: The transmission curves of a Fabry Perot in-
terferometer (resonator) for different degrees of mir-
ror reflection R 

If the transmission curve for a reflection coefficient of .96 is 
compared to the transmission curve of a Michelson interfer-
ometer (Fig. 14) it can be seen that the Fabry Perot has a 
much sharper curve form. 
This makes it easier to determine the certainty of the occur-
rence of a shift of λ/2.) 
 

 
Fig. 14: Comparison between the Michelson and the 
Fabry Perot Interferometers 

At first it seems astonishing that at the point of resonance 
where the mirror distances of the Fabry Perot are just about 
a multiple of half the wavelength, the transmission is 1, as if 
there were no mirrors there at all. 
 
Let us take, for example, a simple helium-neon laser with 1 
mW of power output as a light source and lead the laser 
beam into a Fabry Perot with mirror reflections of 96%. 
The resonance obtained at the exit will also be 1 mW. This 
means that there has to be 24 mW of laser power in the in-
terferometer because 4% is just about 1 mW. Magic? - no, 
not at all - This reveals the characteristics of the resonator in 
the Fabry Perot interferometer. It is, in fact, capable of stor-
ing energy. The luminous power is situated between the 

mirrors. This is why the Fabry Perot is both an interferome-
ter as well as a resonator. It becomes a resonator when the 
mirror distance is definitely adjusted to resonance, as is the 
case, for example, with lasers. 
There are three areas of use for the Fabry Perot: 
 
1. As a Length measuring equipment for a known wave-

length of the light source. The Michelson interferometer 
offers better possibilities for this. 

 
2. As a High-resolution spectrometer for measuring line in-

tervals and line widths(optical spectrum analyser) 
 
3. As a High quality optical resonator for the construction 

of lasers. 
 
In the following series of experiments the Fabry Perot is 
used as a high-resolution spectrometer. Its special character-
istics are tested and measured. 
 
All the parameters required for an understanding of the 
Fabry Perot as a laser resonator are obtained in the process. 
At the end of the chapter on the fundamentals, the most im-
portant parameters of the FP will be discussed, using the 
ideal FP as an example first, so we can then discuss the 
practical aspects, which lead to the divergences from the 
ideal behaviour in the chapter on the real FP. Fig. 15 is 
shown to get an idea of the practical side in the introductory 
chapter itself. 
 
We are looking at the spectrum analyser with the FP as 
shown in Fig. 15. 
 

 
Fig. 15:Experimental situation 

The FP is formed out of two mirrors, fixed parallel to each 
other by adjustment supports. A mirror is fixed on to a Piezo 
element. 
 
This element allows the variation of a mirror distance of 
some µm by applying an electric voltage (Piezo element). 
The transmitted light of the FP is lead on to a photo detec-
tor. A monochromatic laser with a low band width is used 
as a light source. Linear changes in the mirror distance take 
place periodically and the signal is shown on an oscillo-
scope (Fig. 16). 
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Fig. 16: Transmission signal on an oscilloscope with a 
periodic variation of the mirror distance d 

The parameters of the FP will now be explained using this 
diagram. Two transmission signals can be seen. It is obvious 
that the distance d of the FP has been changed to a path just 
over λ/2. In our example we have used a He-Ne laser with 
the wavelength 632 nm, so the change in distance was just 
over 316 nm or 0.000316 mm. The distance between the 
peaks corresponds to a change in length of the resonator dis-
tance of exactly λ/2 according to Eq. (7). The distance be-
tween the two peaks is known as the: 
 Free Spectral Range FSR. 
This range depends on the distance d of the mirrors as 
shown below. For practical reasons, this distance can be 
given in Hz. To calculate this we must ask ourselves: How 
much would the light frequency have to change for the FP 
to travel from one resonance to the next at the now fixed 
distance d ? 
 
The light wave is reflected on the mirrors of the resonator 
and returns back to itself. The electric field intensity of the 
wave at the mirrors is therefore zero. At a given distance d 
the mirrors can only form waves which have the field inten-
sity of zero at both mirrors. It is obviously possible for sev-
eral waves to fit into the resonator if an integer multiple of 
half the wavelength is equal to d. 
 
The waves, which fit into a resonator of a particular length 
are also called oscillating modes or just modes. If the integer 
is called n then all waves which fulfil the following equation 
will fit into the resonator: 

1d n
2
λ= ⋅  

The next neighbouring mode must fulfil the condition 

( ) 2d n 1
2

λ= + ⋅  

The difference between the two equations above gives us: 

( )1 2n n 1 0
2 2
λ λ⋅ − + ⋅ =  

or 

2 1 2
1 2 n 2 d

λ λ ⋅λλ − λ = =
⋅

 

1 2

1
2 d

δλ =
λ ⋅λ ⋅

 

and 

1 2

c c δλν = ⇒ δν = ⋅
λ λ ⋅λ

 

ν is the frequency of light and c the speed of light. The re-
sult for the free spectral range in use is: 

c
2 d

δν =
⋅

 ( 8) 

The size δν is also called the mode distance. In an FP with a 
length L 50 mm, for example, the free spectral range or 
mode distance is δν = 3 GHz. 
 
We can also deduce, from the size of the free spectral range 
calculated above, that the FP in Fig. 15 was tuned to 3 GHz 
with the mirror distance at 50 mm. If we increase the dis-
tance of the FP mirror to 100 mm the size of the FSR be-
tween two resonance peaks is 1.5 GHz. Bearing in mind that 
the frequency of the He-Ne Laser ( λ = 632 nm) is 4.75 105 
GHz, a frequency change in the laser of at least ∆ν/ν = 3 10-

6 can be proved. 
 

 
Fig. 17: Example of a scan of a two mode laser. The 
lower trace shows the change in length of the FP. 

In the example shown in Fig. 17 the spectrum of a two 
mode laser was recorded. Two groups can be seen, consist-
ing of two resonance peaks. Since the free spectral range, 
i.e. the distance between two similar peaks is known 
(through the measurement of the mirror distance and equa-
tion 8) the distance between the frequencies of two 
neighbouring peaks is also known and their difference in 
frequency can be measured precisely. Measurement of the 
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absolute frequency with a Fabry Perot is, however, only 
possible if the exact mirror distance d is known. But this 
would involve considerable practical difficulties, since the 
determination of the length measurement would have to be 
< 10-6. At 50 mm this means δd = δλ/λ 0.05 m = 5 10-8 m = 
50 nm ! 
 
A second important parameter of the Fabry Perot is its fi-
nesse or quality. This determines its resolution capacity. 
Fig. 13 shows the transmission curves for various reflection 
coefficients of the mirrors. There is clearly a connection be-
tween the width of a resonance peak and the value of reflec-
tion. It therefore makes sense to define the finesse as a qual-
ity: 

FSRF =
∆ν

 

 
Fig. 18: Definition of finesse 

For this purpose the full width at half maximum ∆ν 
(FWHM) is calculated 

max minI II
2
−= . 

Let us assume that R≈1. Then Imin ≈ 0 and 

max min maxI I II
2 2
−= ≈  

or I / I0 = ½ . The values δ1 and δ2 can be calculated with 
Eq. 7 where the intensity is just about ½ I0 . 
 

( )
( )

2

2 20

1 RI 1
I 2 1 R 4 R sin

2

−
= =

δ − + ⋅ ⋅   

 

( ) ( )2 221 R 4 R sin 2 1 R
2
δ − + ⋅ ⋅ = ⋅ −  

 

( )224 R sin 1 R
2
δ ⋅ ⋅ = −  

 

1 Rsin
2 2 R
δ −  = ±  ⋅ 

 

1
1 R2 arcsin
2 R

− δ = ⋅  ⋅ 
 

2
1 R2 arcsin
2 R

− δ = − ⋅  ⋅ 
 

since ( 1 - R ) << R, the function arcsin can be replaced by 
its argument: 

1 2
1 R2

R
−δ − δ = ⋅  

with 
2 2k 2d 2d 2d

c
π πνδ = ⋅ = ⋅ = ⋅

λ
 

1 2
4 d 1 R2

c R
π −δ − δ = ⋅∆ν = ⋅  

c 1 R
2 d R

−∆ν = ⋅
π

 

Due to the definition 

FSRF =
∆ν

 

we get by substituting for F: 
 

( )
c R 2 d RF
2 dc 1 R 1 R

⋅ ⋅ π ⋅ π= =
⋅ ⋅ − −

 ( 9 ) 

 
As we have already assumed, the finesse depends on the re-
flectivity R of the mirrors. This is also shown in Fig. 13. 
The tendency now would be to bring the reflectivity R as 
close as possible to 1 to achieve a high finesse. 
 
There are, however limitations in the finesse for the plane 
mirror of the Fabry Perot that has been discussed till now. 
These limitations lie in the imperfection of the mirror sur-
faces, which do not exist to a great extent in the spherical 
FP's yet to be discussed. 
 So, in the next chapter we intend to address these problems. 
2.2 The real Fabry Perot 
The finesse cannot be increased to over 50 even if a plane 
mirror of high technical precision is used. A finesse of 50 
requires a plane of λ/100 ( λ approx. 500 nm) i.e. around 
0.000005 mm = 5 nm !  
 
This is because in anything other than an ideal plane mirror 
surface, the beams do not reflect back precisely, but they di-
verge from the ideal path in approximately thousands of ro-
tations. This blurs the clear phase relationship between the 
waves and as a consequence the resonance curve becomes 
wider. 
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Fig. 19: Limitation of the finesse by the imperfect plane 
of the mirror surfaces in the plane Fabry Perot 

If, on the other hand, spherical mirrors are used, then the 
occurrence of mistakes in sensitivity are much less. In the 
case of spherical FP's however, care must be taken that the 
diameter of the light falling in is smaller than the diameter 
of the mirrors. Generally speaking, this can be accomplished 
particularly well in laser applications. Plane FP's have thus 
very little significance in laser technology. 
 

2.3 The Spherical Fabry Perot 
A spherical Fabry Perot consists of two mirrors with a ra-
dius of curvature r. The most frequently used FP is the con-
focal FP where the mirror distance L is equal to r (Fig. 20). 
The path difference δ is 4r for beams close to the centre. 
So, the free spectral range FSR (δν) is: 
 

c
4 d

δν =
⋅

 ( 10 ) 

 
But the spherical FP is not subjected to the limitations of a 
plane mirror in terms of total finesse based on divergences 
from the ideal mirror surface or maladjustment. If the mirror 
of a plane FP is turned over ε, a beam scanning of 2ε is 
brought about. Due to the imaging characteristic of spheri-
cal mirrors, maladjustment has a much lesser effect on the 
total finesse. The limiting finesse of a spherical FP is there-
fore mainly the reflection finesse. Moreover, spherical mir-
rors can be produced more precisely than plane mirrors. 
  

 
Fig. 20: Confocal Fabry Perot 

 

 
 

Fig. 21: Confocal FP at various beam radii ρ 

2.4 The Spherical FP in practice 
The first mirror of the FP has the effect of a plane-concave 
lens. The incoming beam is therefore scanned as shown in 
Fig. 22. A biconvex lens enables the incoming beam to run 
parallel to the optical axis within the FP. 
 

 
Fig. 22: A biconvex lens is required to make the incom-
ing beam run parallel to the optical axis 

 

 
 

Fig. 23: Course travelled by the beam for the calcula-
tion of the focal distance and position of the biconvex 
lens. 

The above mentioned is also true for the beam exit and a 
lens is put in front of the photo detector for this purpose. 
Other effects can also be achieved with this lens. If the con-
dition ρ<<R cannot be executed, there is a dislocation of the 
point of intersection of the interfering beams in the resona-
tor [2], due to spherical aberrations of the mirrors. If this 
plane of intersection is imaged with a lens, the finesse will 
still be good. 
Another important point is the exact distance between the 
mirrors. In a spherical FP, for example r=100 mm, the error 
should not be more than 14 µm. The distance between the 
mirrors is varied by a few millimetres to find this point. The 
oscilloscope shows the image in Fig. 24. 
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Fig. 24: The contrast is more intense close to d = r. At d 
≡ r the confocal case has been reached and the contrast 
is at its maximum. 

Apart from the confocal FP, other types of spherical resona-
tors can be devised. As a necessary prerequisite, they must 
fulfil the criteria for stability. 

1 20 g g 1≤ ⋅ ≤  

i
i

dg 1
r

= − . 

d is the mirror distance and r the mirror radius. The Index i 
is for the left mirror l or for the right mirror 2. If the product 
g1 g2 sufficiently fulfils the above condition, the resonator is 
optically stable (Fig. 25). 
 Various combinations can be executed in the shaded areas 
as far as the radius of curvature r and the mirror distance d 
are concerned. Both have a more or less good finesse, repre-
senting an important parameter for the FP as a spectrum 
analyser. 
The highest finesse is achieved with a confocal resonator 
(B). Here d = r and g1 and g2 are zero. 
 
The plane FP has g-values of 1 since r is infinite (A). Fi-
nally we can choose a concentric arrangement with a mirror 
distance of d = 2r and g-values of -1. This case has been 
marked by C.  

 
Fig. 25: Stability of optical resonators 
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4 Experimental set-up 

 

The experimental set-up consists of two mirror adjustment 
supports (module D and E )in which the mirrors of the 
Fabry Perot resonator are accommodated. One mirror is at-
tached to a Piezo element (module E) which produces linear 
expansion, periodically. Both mirrors can be easily inter-
changed. The mirror adjustment support with the Piezo ele-
ment is attached to a linear displacement mechanism to 
achieve confocal adjustment. The spectrum of the He-Ne la-
ser beam to be taken up, is adjusted to the required beam ra-
dius as well as divergence, using a telescope (module B and 
C). A collimating lens is positioned before the photo detec-
tor (module G) to ensure optimum illuminating in each case. 
The photo detector is connected by means of a BNC cable 
to the rear of the controller (module H). The gain selector of 
the built-in photodiode amplifier is placed on the front 
panel. Its output is on the rear of the controller. BNC 
plugs/sockets & cables are used to make the necessary con-
nections. A periodic linear change in the Piezo voltage can 
occur at a range of 0-150 V. The frequency is tuned with the 
appropriate regulator on the front panel of the apparatus to 
obtain an image on the oscilloscope that does not flicker. 
There is a low voltage output at the rear, which when con-
nected to the oscilloscope shows the Piezo swing. The am-
plitude and with it, the number of sequences passed 
through per cycle are tuned with an amplitude regulator. 
The spectrum can also be shifted with an Offset regulator. 
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4.1 Components 
The optical rail, 1 m in length, on which the individual 
components are placed is not shown. 
 

 
Module D 
This module is the first part of the Fabry Perot resonator. 
The mirrors are mounted in holders (1) which are screwed 
into the laser mirror adjustment holder (3). All three mir-
rors (2) have a transmission of 4% for 632 nm. The radii 
of curvature are 75 mm, 100 mm and infinite. 
 
 

 
 

Module E 
This is the second part of the Fabry Perot resonator. A 
Piezo-crystal is built into the laser mirror adjustment 
holder which has a threading at its front side. The individ-
ual mirrors (1,2,3) are mounted by means of a screw cap 
which has a soft O-ring at its inside. All three mirrors have 
a transmission of 4% for 632 nm. The radii of curvature 
are 75 mm, 100 mm and infinite. The carrier has a pinion 
driving screw and a gear rack which is inserted into the 
slot of the profile rail. So sensitive linear displacement 
variations of this laser mirror holder can be performed. 
 

 
Module B 
A lens (1) with short focal distance (f=5 mm) is the first 
component of the beam enlarging system which actually is 
made up of module B and module C. For the directional 
adjustment with regard to the optical axis this lens is 
mounted in a holder which can be adjusted in the XY-
direction as well as in two orthogonal angles 
 

 
 
Module C 
The module C has two parts to play. In connection with 
module B it forms the second part (f= 20 mm) of the beam 
enlarging system. The beam enlarging system is only of 
interest when plane parallel mirrors are used. At the use of 
spherical mirrors a lens (2) of f= 150 mm is inserted to 
compensate for the beam broadening of the plane concave 
mirror. 
 
 

 
Module G 
A PIN-photodiode mounted in a housing with „click“-
mechanism and BNC-socket detects the interference pat-
tern. The photodetector is „clicked“ into the mounting 
plate on carrier. The inner pin of the BNC-socket is con-
nected to the anode. By means of the attached BNC-cable 
the detector is connected to the amplifier of module H. 
 
 

 
 
Module A 
A HeNe-Laser is used as test laser. The emission spectrum 
consists of two longitudinal modes with a frequency dis-
tance of about 900 MHz. The modes are orthogonally po-
larised and linear. Two mounting plates with carrier are 
part of the module as well as the supply unit of the laser. 
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Module H 
All voltages necessary for the supply of the Piezo-crystal 
and all monitor signals are generated by the controller 
FPC-01. It also contains the photodiode amplifier. The il-
lustration at the right side shows the possibilities of volt-
age adjustment for the Piezo-crystal. The maximum volt-
age is 150 V. The frequency of the incorporated modulator 
for triangular signals can be adjusted up to 100 Hz. A 
monitor signal which is proportional to the selected Piezo-
voltage is disposed by a BNC-socket at the rear. This sig-
nal should always be on the oscilloscope together with the 
photodetector signal to ensure that the Piezo-crystal is con-
trolled correctly. The amplification of the built-in photodi-
ode amplifier can be switched in five steps from 1 to 100. 
The control button is on the front panel of the unit.  
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5 Experiments 

5.1 Adjustment 
 

. 

 
1. The components shown above are placed on to the rail 

and clicked into place. Use of a set of spherical mirrors 
is recommended for the first adjustment 

 
2. The mirror adjustment holder "on the right hand side", is 

adjusted so that the beam going back, runs centred to-
wards the laser beam. Due to the imaging characteristic 
of a spherical mirror the returning beam is expanded. 

 
3. The Piezo voltage is tuned to maximum amplitude with 

the offset regulator to create a triangular voltage on the 
oscilloscope as shown in Fig. 26 

 

 
 

Fig. 26: The tuned in Piezo voltage should not be 
clipped, either at the top or at the bottom 
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1. In the second step, the biconvex lens and the mirror ad-

justment holder are placed "on the left hand side". The 
mirror distance is chosen in such a way that d = r. The 
mirror placed into the adjustment support is then pre-
adjusted and the returning beam will be centred towards 
the laser beam. Turn on the photo amplifier and adjust 
the oscilloscope to the maximum level of sensitivity and 
mode A/C. 

 
Apart from the vibrations you will see the first "resonance 

humps". Keep adjusting the mirrors, making the 
"humps" increasingly clearer. You will have to continu-
ously reduce the intensity simultaneously. When you 
have reached an optimum, you can shift the biconvex 
lens for maximum amplitude. 

2. In the last adjustment step, the slide of the mirror ad-
justment support is gently released from the rail, "on the 
right hand side" and the distance d is changed with a line 
adjustment device. You can see the spectrum as shown 
in Fig. 27 coming close to the confocal case while the 
mirror adjustment support is being moved. 

3. Repeat the individual adjustment steps till you have 
tuned in to a spectrum with the highest possible finesse. 
Optimise the convergent lens that is in front of the photo 
detector. 

 

 
 
Fig. 27: Spectrum during the movement of the mirror 

support „on the right hand side“ close to the 
confocal adjustment 

 
 
 
 
 
 
 

5.2 Measurement of the FSR 
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Fig. 28: Measurement of the free spectral range 
 
1. If the adjustment has been made to the highest possible 

finesse, the free spectral range is determined in the next 
step (Eq. 8). 

To do this, the amplitude has to be tuned down till only two 
sequences are left within the increase and decrease of 
the Piezo movement (Fig. 28 ). 

2. The image can be made symmetrical with the offset ad-
justment. Using Eq. 8, the X axis of the oscilloscope can 
be calibrated in MHz light frequency (relative). 

3. Since the path difference δ for the occurrence of two 
neighbouring resonance points according to Eq. 7, and 
the wavelength of the test laser ( 0.632 µm ) are 
known, the specific expansion ( µm /100 Volt ) of the 
Piezo element can now be determined.  

5.3 Measurement of the finesse 
 

 
 

Fig. 29: Measurement of the full width at half-maxi-
mum ∆ν for the determination of the finesse 

1. For this measurement the electronic adjustments are se-
lected in such a way that only two sequences fill the 
screen. 

2. The photo detector's channel has to be set to DC for this 
measurement to obtain the base line for I0. 

3. The free spectral range for the calibration of the repre-
sented units on the oscilloscope is determined by the dis-
tance between two neighbouring sequences. 

4. It is recommended to optimise the adjustments once 
more in this presentation. 

5.4 Measurement of a mode spectrum 
 

 
 

Fig. 30: Measurement of the mode distance δνM of the 
test laser 

1. To measure the mode distance of the test laser, an ex-
ample as shown in Fig. 30 should be selected. Once 
again the distance between two neighbouring sequences 
determines the frequency calibration and δνM can then 
be measured in units of frequency. 

 
2. After completing this measurement you can switch off 

the test laser and allow it to cool for 2-3 minutes. When 
you switch it on again, the modes will now "pass across" 
the screen and you can observe the thermal running-in of 
the modes. 

 
3. It is also possible to examine the polarising ability of the 

modes with a simple polarizer. If the laser does not have 
any built-in devices for polarisation selection (e.g. 
Brewster window), then the modes are polarised in dif-
ferent ways. The polarizer should be positioned directly 
behind the laser. By turning it, the disappearance of one 
mode or the other can be observed on the screen. 

5.5 The plane Fabry Perot 
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Fig. 31 Fabry Perot with plan mirrors and beam expanding telescope 

1. The aim of this experiment is to clarify the difference between the plane FP and the spherical FP. The light of the test laser 
is first lead into the resonator, now equipped with plane mirrors, without `prior optical treatment’. The adjustment proce-
dure is the same as for the spherical FP. 

2. You will now see that the adjustment here is obviously more critical than in the case of a spherical FP. 
3. Adjust the returning beam in such a way that it just misses returning into the test laser. Otherwise the FP acts as a resonator 

that is connected to the test laser resonator and the modes begin to oscillate irregularly. 
4. The same measurements are carried out as in the spherical FP's. 
5. Moreover, the beam can be expanded with the telescope, having a lens of =-5 mm and the achromatic lens f = 20 mm. 

Contrary to the spherical FP's, an increase in the finesse will be observed.  
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